# Mesh Scripting

Other languages:
čeština • ‎Deutsch • ‎English • ‎español • ‎français • ‎Bahasa Indonesia • ‎italiano • ‎polski • ‎română • ‎русский • ‎svenska • ‎Türkçe • ‎中文（中国大陆）‎

### Introduction

First of all you have to import the Mesh module:

import Mesh

After that you have access to the Mesh module and the Mesh class which facilitate the functions of the FreeCAD C++ Mesh-Kernel.

To create an empty mesh object just use the standard constructor:

mesh = Mesh.Mesh()

You can also create an object from a file

mesh = Mesh.Mesh('D:/temp/Something.stl')

(A list of compatible filetypes can be found under 'Meshes' here.)

Or create it out of a set of triangles described by their corner points:

planarMesh = [
# triangle 1
[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.0000],
#triangle 2
[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],
]
planarMeshObject = Mesh.Mesh(planarMesh)
Mesh.show(planarMeshObject)

The Mesh-Kernel takes care about creating a topological correct data structure by sorting coincident points and edges together.

Later on you will see how you can test and examine mesh data.

### Modeling

To create regular geometries you can use the Python script BuildRegularGeoms.py.

import BuildRegularGeoms

This script provides methods to define simple rotation bodies like spheres, ellipsoids, cylinders, toroids and cones. And it also has a method to create a simple cube. To create a toroid, for instance, can be done as follows:

t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles
m = Mesh.Mesh(t)

The first two parameters define the radiuses of the toroid and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother and the lower the coarser the body is. The Mesh class provides a set of boolean functions that can be used for modeling purposes. It provides union, intersection and difference of two mesh objects.

m1, m2              # are the input mesh objects
m3 = Mesh.Mesh(m1)  # create a copy of m1
m3.unite(m2)        # union of m1 and m2, the result is stored in m3
m4 = Mesh.Mesh(m1)
m4.intersect(m2)    # intersection of m1 and m2
m5 = Mesh.Mesh(m1)
m5.difference(m2)   # the difference of m1 and m2
m6 = Mesh.Mesh(m2)
m6.difference(m1)   # the difference of m2 and m1, usually the result is different to m5

Finally, a full example that computes the intersection between a sphere and a cylinder that intersects the sphere.

import Mesh, BuildRegularGeoms
sphere = Mesh.Mesh( BuildRegularGeoms.Sphere(5.0, 50) )
cylinder = Mesh.Mesh( BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50) )
diff = sphere
diff = diff.difference(cylinder)
d.recompute()

### Exporting

You can even write the mesh to a python module: